Step by step intro

Do you like pytorch?

Convert input to tensor

if not torch.is_tensor(input):
    self.input = torch.from_numpy(input)

Convert to tf:

change if data type matches! numpy tensor etc

tf.cast(x, dtype)

Initialize parameters

np.random.randn

np.random.seed(3)

W1 = np.random.randn(n_h, n_x) * 0.01
b1 = np.zeros(shape = (n_h, 1))
W2 = np.random.randn(n_y, n_h) * 0.01
b2 = np.zeros(shape = (n_y, 1))

Choose an optimization algorithm

torch.optim.Adam

Build a model

1. Forward propagate an input

torch.nn.Module.forward

2. Compute the loss function

nn.CrossEntropyLoss

Link to other loss functions

3. Compute the gradients of the cost with respect to parameters using backpropagation

4. Update each parameter using the gradients, according to the optimization algorithm

loss.backward()

Fine-tuning

Wk4 - Building your Deep Neural Network: Step by Step

Last updated

Was this helpful?