Step by step intro
Do you like pytorch?
Convert input to tensor
Convert to tf:
change if data type matches! numpy tensor etc
Initialize parameters
np.random.randn
Choose an optimization algorithm
Build a model
1. Forward propagate an input
torch.nn.Module.forward
2. Compute the loss function
nn.CrossEntropyLoss
Link to other loss functions
3. Compute the gradients of the cost with respect to parameters using backpropagation
4. Update each parameter using the gradients, according to the optimization algorithm
Fine-tuning
Last updated