Step by step intro

Do you like pytorch?

Convert input to tensor

if not torch.is_tensor(input):
    self.input = torch.from_numpy(input)

Convert to tf:

change if data type matches! numpy tensor etc

tf.cast(x, dtype)

Initialize parameters

np.random.randn

np.random.seed(3)

W1 = np.random.randn(n_h, n_x) * 0.01
b1 = np.zeros(shape = (n_h, 1))
W2 = np.random.randn(n_y, n_h) * 0.01
b2 = np.zeros(shape = (n_y, 1))

Choose an optimization algorithm

torch.optim.Adamarrow-up-right

Build a model

1. Forward propagate an input

torch.nn.Module.forward

2. Compute the loss function

nn.CrossEntropyLoss

Link to other loss functionsarrow-up-right

3. Compute the gradients of the cost with respect to parameters using backpropagation

4. Update each parameter using the gradients, according to the optimization algorithm

loss.backward()arrow-up-right

Fine-tuning

Wk4 - Building your Deep Neural Network: Step by Stepchevron-right

Last updated

Was this helpful?