Path Integration
dtā=γdāĪ“tā+vtā where \delta_d
is the true velocity, \gamma_d
is the velocity gain, and \v_t
is the noise
P(Īøtāā£d1:tā1ā)=N(Īøtāā£mtā,st2ā) thus d_t is integral from 1 to t-1
1ātādtā=1ātā(γdāĪ“tā+vtā) because gamma is constant
1ātā(γdāĪ“tā+vtā)=vdāā«1tāγdā+1ātāvtā because the initial heading angle is 0, thus the sum velocity is the current heading angle
and we get