Traditional neural network:
xβf(x)βy f(x)=ax+b loss=(f(x)βy)2=(ax+bβy)2 a=aββaβlossβ(gradientΒ descent) a=aβ2(ax+bβy)β
xβ
LR b=bβ2(ax+bβy)β
Yβ
LR Neural ODE:
ΞΈ=[a,b] βtβzβ=f(z,t,ΞΈ) xβg(x)βy=z0ββg(x)βztβ loss=(ztββODE(f(z0β)))2 βzTββlossβ=2Γ(ztββODE(f(z0β))) ΞΈ=ΞΈβ2βΞΈβlossββ
LR