Traditional neural network:
x→f(x)→y f(x)=ax+b loss=(f(x)−y)2=(ax+b−y)2 a=a−∂a∂loss(gradient descent) a=a−2(ax+b−y)⋅x⋅LR b=b−2(ax+b−y)⋅Y⋅LR Neural ODE:
θ=[a,b] ∂t∂z=f(z,t,θ) x→g(x)→y=z0→g(x)→zt loss=(zt−ODE(f(z0)))2 ∂zT∂loss=2×(zt−ODE(f(z0))) θ=θ−2∂θ∂loss⋅LR ODE solver