Bayesian Knowledge Tracing
pL – latent (mastery)
pT – transition (learning)
pG – guess
pS – slip
Learning order (K)
Problem difficulty
Prior knowledge (initial assessment + sequential)
*Learning rate/speed (derivatives / ODE or PDE)
#@title Initialize Parameters
import numpy as np
def initialize_parameters(pL, pT, pS, pG):
np.random.seed(1)
pL = np.random.randn(1)
pT = np.random.randn(1)
pS = np.random.randn(1)
pG = np.random.randn(1)
parameters = {
'pL': pL,
'pT': pT,
'pS': pS,
'pG': pG
}
return parametersLast updated
Was this helpful?